
NASA TECHNICAL NOTE N A S A  TN Dn __ _- - 
t i  

SUPERSONIC LATERAL-DIRECTIONAL 
STABILITY CHARACTERISTICS OF A 4 5 O  
SWEPT WING-BODY-TAIL MODEL WITH 
VARIOUS BODY CROSS-SECTIONAL SHAPES 

by Dennis E .  Faller and Jumes F. Campbell 

Langley Research Center 
Langley Station, Humpton, Vu. 

-2376 -- 

r' N A T I O N A L  AERONAUTICS A N D  SPACE A D M I N I S T R A T I O N  WASHINGTON,  D. C. AUGUST 1964 J 

f 
I 



TECH LIBRARY KAFB. NY 

SUPERSONIC LATERAL -DIRECTIONAL STABILITY CHARACTERISTICS 

O F  A 45' SWEPT WING-BODY-TAIL MODEL WITH 

VARIOUS BODY CROSS-SECTIONAL SHAPES 

By Dennis E. Fuller and James  F. Campbell 

Langley Research Center 
Langley Station, Hampton, Va. 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

For sa le  by the Of f ice  of Technica l  Services, Department of Commerce, 
Washington, D.C. 20230 -- Pr ice  $1.25 



SUPEBSONIC LATERAL-DIRECTIONAL STABILITY CHARACTERISTICS 

OF A 45O SWEPT WING-BODY-TAIL MODEL WITH 

VARIOUS BODY CROSS-SECTIONAL SHAPES 

By Dennis E. Fu l l e r  and James F. Campbell 
Langley Research Center 

SUMMARY 

An invest igat ion has been made i n  t h e  Langley 4- by 4-foot supersonic pres- 
sure tunnel t o  determine the  l a t e r a l ,  d i rec t iona l ,  and longi tudinal  s t a b i l i t y  
charac te r i s t ics  of a 4 5 O  swept wing-body-tail model having various body cross- 
sec t iona l  shapes. The cross-sectional shapes t e s t ed  include a c i r c l e ,  an 
e l l i p s e ,  a flat-bottom teardrop, an upright t r i ang le ,  and an inverted t r iangle .  
Tests were performed a t  angles of a t t ack  of about -bo t o  22O, a t  angles of side- 
s l i p  from about -bo t o  8 O ,  a t  Mach numbers of 1 .41  and 2.20, and a t  a Reynolds 
number per  foot  of 3.0 x 106. 

The r e su l t s  ind ica te  t h a t  t h e  d i rec t iona l  s t a b i l i t y ,  pa r t i cu la r ly  f o r  high 
angles of a t tack ,  was found t o  be dependent on body cross-sectional shape. A 
c i r cu la r  fuselage generally indicates  t he  l e a s t  e f f ec t s  of angle of a t tack  on 
the l a t e ra l -d i r ec t iona l  s t a b i l i t y  charac te r i s t ics  of any of the  body shapes 
tes ted .  

INTROIlIJC T I  ON 

There i s  a continuing problem of providing adequate lateral  and d i rec t iona l  
s t a b i l i t y  f o r  a i r c r a f t  operating i n  the  supersonic speed range. Previous 
papers, such a s  references 1 and 2, have described some of t he  sources of t h i s  
problem and pointed out some of t he  fac tors  t h a t  a f f e c t  t h e  s t a b i l i t y  a t  super- 
sonic speeds. However, there  i s  s t i l l  a general lack of information i n  the  
supersonic speed range concerning the  e f f ec t s  of various design var iables  on 
the  s t a t i c  s t a b i l i t y  charac te r i s t ics .  

Some e f f o r t  has been expended t o  determine the  e f f ec t  of body cross- 
sect ional  shape on the  longi tudinal  s t a b i l i t y  and performance charac te r i s t ics  
of bodies, wing-bodies, and a i r c r a f t  ( r e f s .  3 ,  4, and 5 ) ,  but these s tudies  
have not included the  l a t e r a l  and d i rec t iona l  s t a b i l i t y  charac te r i s t ics .  
Accordingly, an invest igat ion has been undertaken t o  determine the  e f f ec t  of 



some basic fuselage shapes on the  lateral  and d i rec t iona l  s t a b i l i t y  character-  
i s t i c s  and on t h e  v e r t i c a l - t a i l  effect iveness  of wing-body-tail configurations 
a t  supersonic speeds. The cross-sectional shapes of the  bodies included a 
c i r c l e ,  an e l l i p se ,  a flat-bottom teardrop, an upright t r iangle ,  and an inverted 
t r iangle .  The wing and v e r t i c a l  t a i l  f o r  a l l  of t he  bodies were the  same. 
Tests t o  obtain the  longi tudinal  cha rac t e r i s t i c s  of t h e  various configurations 
were a l so  included. 

The t e s t s  were performed i n  t h e  Langley 4- by 4-foot supersonic pressure 
tunnel a t  Mach numbers of 1 .41  and 2.20, a t  angles of a t t ack  from about -4' t o  
22O, and angles of s ides l ip  from about -4O t o  8 O .  
3.0 x lo6 per foot.  

The t e s t  Reynolds number was 

SYMBOLS 

The la teral  force and moment data are re fer red  t o  t h e  body ax i s  system and 
t h e  longi tudinal  force and moment data are re fer red  t o  the  s t a b i l i t y  ax i s  sys- 
t e m .  
of t h e  fuselage. The symbols used are defined as follows: 

The reference center of moments w a s  located a t  t h e  45.4-percent s t a t ion  

a '  semiminor ax i s  

b' semimajor axis 

b . wing 

E wing 

l i f t  CL 

span, 24.00 in .  

mean geometric chord, 6.89 in .  

Drag coef f ic ien t ,  - ss, 

L i f t  coef f ic ien t ,  - 
q s ,  

Pitching moment Cm pitching-moment coeff ic ient ,  
s w  

Rolling moment rolling-moment coef f ic ien t ,  - 
sSwb 

C 2  

- mz czp - &- 

K 2 p  = (clp) 
t a i l -on  or wing-on - t a i l - o f f  or wing-off 
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Yawing moment yawing-moment coef f ic ien t ,  
SSWb 

Cn 

CY 
Side force side-force coef f ic ien t ,  - 

9% 

- 
E~~ - (CYP)tail-on or wing-on - (CyP)tail-off or wing-off 

l i f t - d r a g  r a t i o  

free-stream Mach number 

free-stream dynamic pressure 

radius 

reference wing area,  1.0 sq f t  

distance from nose, rearward 

distance from model center  l i n e ,  downward 

angle of a t tack ,  deg 

angle of s ides l ip ,  deg 

APPARATUS AND TESTS 

Model 

Drawings of t he  model a r e  presented i n  f igure  1. Body cross-sect ional  
areas  and l a t e r a l  areas  a r e  presented i n  t ab le  I and body nose coordinates a r e  
presented i n  t ab le  11. 
an aspect r a t i o  of 4, a taper  r a t i o  of 0.2 and NACA 63A004 a i r f o i l  sect ions i n  
the  streamwise d i rec t ion .  
sweepback of t he  leading edge. 

The wing had 4 5 O  sweepback of the quarter-chord l i n e ,  

The v e r t i c a l  t a i l  had a hexagonal sect ion with 42O 
The wing and v e r t i c a l  t a i l  were a f f ixed  t o  a 
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steel  core over which the  various body shapes were f i t t e d .  Hence, f o r  some of 
t he  body shapes, there  a re  geometric var ia t ions i n  the  exposed v e r t i c a l - t a i l  
area and t h e  v e r t i c a l  locat ion of t he  wing r e l a t i v e  t o  t h e  body. The various 
body shapes were constructed of wood with a f iber-glass  surface with the  excep- 
t i o n  of t he  c i r c l e  which had a s t a in l e s s - s t ee l  nose. 

Mach 
number 

1.41 
2.20 

TABLE I.- BODY CROSS-SECTIONAL AND LATEBAL AREAS 

Stagnation temperature, Stagnation pressure, Reynolds number, 
OF lb/sq in .  abs per f t  

110 10.3 3.0 x 106 
~ ~~ 

110 13.2 3.0 X 106 

Body shape Cross-sectional area,  Lateral  area,  
sq i n .  

Ci rc le  
El l ipse  
F l a t  -bottom teardrop 
Inverted and upright t r i ang le  

9.621 
14.432 
13.022 
14.496 

0.856 
1.287 

1.086 
1.064 

Tunnel 

T e s t s  were conducted i n  the  Langley 4- by 4-foot supersonic pressure tun-  
ne l  which i s  a continuous-flow tunnel with variable-pressure capabi l i ty .  The 
nozzle leading t o  the  t e s t  sect ion i s  symmetrical and may be manually changed 
t o  provide Mach numbers from about 1 . 4  t o  2.2. 

T e s t  C ondi t i on s 

The tests were performed a t  the  following conditions: 

The stagnation dewpoint w a s  maintained a t  -30° F i n  order t o  avoid condensation 
e f fec ts .  
t o  220 and through a s ides l ip  angle range from about -bo t o  80. 
obtain turbulent flow over the model, a 1/16-inch-wide s t r i p  of N o .  60 carborun- 
dum grains was af f ixed  around the  body one-half inch from the  nose and on the  
wing and t a i l  one-half inch from t he  leading edge i n  a streamwise direct ion.  

Tests were performed through an angle-of-attack range from about -bo 
In  order t o  
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!PA.BL& 11.- BODY NOSE COORDINATES 

b ' ,  i n .  

Ci rc le  

y, i n .  

r, i n .  

x, i n .  

0.000 
.500 
1.000 
1.500 
2.000 
3.000 
4.000 
5.000 
6.125 
7.125 
8.125 
9.125 
10. ~5 
11.125 
12.250 

x, i n .  

0.000 
.500 
1.000 
1.500 
2.000 

4.000 

~ 

3.000 

5.000 
6.125 
7.125 
8.125 
9.125 
io. 125 
11.125 
12.250 

0.000 
.143 
.278 
.408 
532 
.761 - 965 
1.145 
1.319 
1.448 
1.550 
1.639 
1.698 
1.735 
1- 750 

Flat-bottom teardrop 

a '  i n .  
i* 1 
0.000 
.143 
.278 
.408 
.532 
.761 
.965 
1.145 
1.319 
1.448 
1 550 
1.639 
1.698 
1.735 
1.750 

~~ 

0.000 

.417 

.215 

.612 

.798 
1.142 
1.448 
1.718 
1.979 
2.172 
2.325 
2.459 
2.547 
2.603 
2.625 

0.000 
.070 
137 
.201 
.262 
-375 
475 
.564 
.650 
.722 
.763 
.807 
.836 
855 
.862 

x, i n .  

0.000 
.500 
1.000 

2.000 
3.000 
4.000 
5.000 
6.125 
7.125 
8.125 
9 - 125 
io. 125 
11.125 
2.250 

1.500 

E l l i p  s e 

a t ,  i n .  

0.000 
.143 
27s 
.408 
* 532 
.761 
' 965 
1.145 
1.319 
1.448 
1 * 550 
1.639 
1.698 
1.735 
1.750 

b', i n .  

0.000 
.194 
.417 
.612 
* 798 
1.142 
1.448 
1.718 
1.979 
2.172 
2.325 
2.459 
2.547 
2.603 
2.625 

Triangle, upright 
and inver ted  

~~ 

x, i n .  

0.000 

1.000 

2.000 

4.000 

.500 

1.500 

3.000 

5.000 
6.125 
7.125 
8 .,125 
9 .I25 
io. 125 

12.250 
il .I25 

y, i n .  

0 .ooo 
.143 
,278 
.408 
532 
.761 
- 965 
1.145 
1.319 
1.448 
1 550 
i. 639 
1.698 
1.735 
1 - 750 

r, i n .  

0.000 
.064 
137 
.201 
.262 
375 - 475 
.564 
.650 
.722 
.763 
.&7 
.836 
.855 
.862 

* a '  = y. 
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Measurements 

Aerodynamic forces  and moments were measured by means of a six-component 
e l e c t r i c a l  strain-gage balance housed within the  model. 
was r ig id ly  fastened t o  a s t ing  support and thence t o  the  tunnel support system. 
The balance-chamber pressure w a s  measured by m e a n s  of a s ingle  s t a t i c  o r i f i c e  
i n  t h e  balance cavi ty  of each model for  a l l  t es t  conditions. 

The balance, i n  turn, 

Accuracy 

The accuracy of {he measured quant i t ies  , based on cal ibrat ions and repeat-  
a b i l i t y  of data is  estimated t o  be within t h e  following l i m i t s :  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

9.0002 
ko . 0001 
9 .002 

33.0002 
S .0004 
ko .001 
M.10 
33.10 
9 . 0 1  

L11 

Corrections 

Angles of a t t ack  and s ides l ip  were corrected f o r  def lect ion of the  balance 
and s t ing  support as a r e s u l t  of aerodynamic loads. The drag data were adjusted 
t o  correspond t o  free-stream s t a t i c  conditions i n  the  balance chamber. 

PRESENTATION OF RESULTS 

The results of t he  invest igat ion a r e  presented i n  the  following figures: 

Figure 

Typical aerodynamic charac te r i s t ics  i n  s ides l ip .  Wing on; 

Typical aerodynamic charac te r i s t ics  i n  s ides l ip .  Wing on; 

Variation of s ides l ip  parameters with angle of a t t ack  for the  

Variation of s ides l ip  parameters with angle of a t t ack  for t he  f la t -  

Variation of s ides l ip  parameters with angle of a t t ack  fo r  the  

M = 1 . 4 1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 

M = 2 . 2 0 . . . . .  3 

c i rcu lar  fuselage. Wing on; M = 1.41  and 2.20 . . . . . . . . . . .  4 

bottom teardrop fuselage. Wing-on; M = 1.41 and 2.20 5 

e l l i p t i c a l  fuselage. Wing on; M = 1.41  and 2.20 . . . . . . . . . .  6 

. . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . .  

b 



Figure 

Variation of s ides l ip  parameters with angle of a t t ack  f o r  t he  upright 

Variation of s ides l ip  parameters with angle of a t t ack  f o r  t he  upright 

Variation of v e r t i c a l - t a i l  contribution t o  s ides l ip  der ivat ives  f o r  

Effect  of wing on the  var ia t ion  of v e r t i c a l - t a i l  contribution t o  

. . . .  and inverted t r iangular  fuselage. Wing on; M = 1.41 and 2.20 7 

and inverted t r iangular  fuselage. Wing of f ;  M = 1.41 and 2.20 . . .  8 

various body shapes. Wing on; M = 1.41 and 2.20 9 

M = 1.41 and 2.20 . . . . . . . . . . . . . . . . . . . . . . . . . .  10 

i s t i c s  i n  pi tch.  M = 1.41  and 2.20 . . . . . . . . . . . . . . . . .  11 

. . . . . . . . . .  
s ides l ip  der ivat ives  f o r  upright and inverted t r iangular  bodies. 

Effect  of fuselage cross-sectional shape on aerodynamic character- 

RESULTS AND DISCUSSION 

Basic aerodynamic charac te r i s t ics  i n  s ides l ip  f o r  t h e  c i r cu la r  and the  two 
t r iangular  body configurations are presented i n  f igures  2 and 3 f o r  angles of 
a t t ack  of about 00, 1l0, and 16O. 
ind ica te  the  l i n e a r i t y  of t he  data s ince the  s ides l ip  parameters presented 
herein were obtained from incremental r e s u l t s  of t e s t s  made through the  angle- 
of-at tack range a t  s ides l ip  angles of about Oo and 4O. 
are es sen t i a l ly  l i nea r  with s ides l ip  angle with the  exception of some of t he  
r e su l t s  a t  an angle of a t t a c k  of about 16' wherein the  nonl inear i ty  w i l l  cause 
some e r r o r  i n  t h e  absolute values of t he  s ides l ip  parameters presented. 

These f igures  a re  presented primarily t o  

The s ides l ip  coeff ic ients  

The var ia t ion  of the  s ides l ip  parameters with angle of a t t ack  for a l l  t he  
configurations are presented i n  f igures  4 t o  8 and the  t a i l  contributions t o  
the  s ides l ip  der ivat ives  a r e  presented i n  f igure  9. A d i rec t  comparison of 
the  results cannot be made s ince the  individual models represent separate con- 
f igurat ions t h a t  d i f f e r  not only i n  cross-sectional shape and area (see t ab le  I) 
but a l s o  i n  exposed t a i l  and wing area,  r e l a t i v e  wing height,  and l a t e r a l  area.  

A s  t h e  angle of a t t ack  i s  increased the  var ia t ion of t he  s ides l ip  deriva- 
t i v e s  becomes involved and i s  p a r t l y  dependent on the  cross-flow pa t te rn  about 
t he  bodies and the formation of wake pat terns  from the  forebody and wing-body 
juncture. I n  general, the  c i r cu la r  body, which i s  the  only shape t h a t  con- 
s i s t e n t l y  provides a symmetrical cross-flow pa t te rn  a t  combined angles of a t t ack  
and s ides l ip ,  indicates  the  least var ia t ion  of s ides l ip  der ivat ives  and t a i l  
contribution with angle of a t tack .  (See f i g s .  4 and 9.)  

The only configurations having subs tan t ia l  differences i n  cross section 
while maintaining the  same volume and area d i s t r ibu t ion  a re  those with the  
upright and inverted t r iangular  sections.  For t h e  purpose of comparison, t h e  
r e s u l t s  f o r  these configurations with t h e  wing on a r e  presented i n  f igure  7 and 
with the  wing removed i n  figure 8. The r e s u l t s  ind ica te  t h a t  differences occur 
i n  the  s ides l ip  cha rac t e r i s t i c s  f o r  t he  two body shapes. Near a = 00, f o r  
example, t h e  d i rec t iona l  s t a b i l i t y ,  with wing on and wing o f f ,  i s  greater  with 
the  inverted t r i ang le  fuselage than with the  upright t r i ang le  fuselage, pre- 
sumably because t h e  v e r t i c a l  t a i l  on t h e  inverted t r i ang le  fuselage has a 
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s l i g h t l y  greater  exposed area.  However, with increasing angle of a t tack,  t he  
upright t r i ang le  fuselage ind ica tes  l e s s  de te r iora t ion  i n  
inverted t r i ang le  fuselage, and a t  high angles of a t t a c k  results i n  a substan- 
t i a l l y  higher level  of d i rec t iona l  s t a b i l i t y .  
i s  influenced both by the  t a i l  contribution and the  t a i l - o f f  s t a b i l i t y  charac- 
t e r i s t i c s ,  and a comparison of t h e  wing-on and wing-off r e s u l t s  ind ica te  these 
fac tors  a r e  a l s o  influenced by the  wing. 
it i s  not possible t o  i s o l a t e  completely the  causes of these r e s u l t s  from t o t a l  
force and moment measurements, t he  var ia t ions  i n  the  results do point out a 
strong e f f ec t  of body cross sect ion t h a t  adds t o  t h e  complexity of t he  l a t e r a l -  
d i rec t iona l  s t a b i l i t y  charac te r i s t ics  and ind ica te  some of t he  fac tors  t h a t  
must be considered i n  attempting t o  solve the  l a t e ra l -d i r ec t iona l  s t a b i l i t y  
problems. 

than t h e  CnP 

This higher l e v e l  of s t a b i l i t y  

(See f i g s .  7, 8, and 10.) Although 

The aerodynamic charac te r i s t ics  i n  p i t ch  f o r  t he  t es t  configurations are 
presented i n  figure 11. Since some of t he  bodies were of d i f fe ren t  volumes a s  
w e l l  as cross-sectional areas,  no attempt has been made t o  analyze these data.  

SUMMARY OF RESULTS 

Tests t o  determine the  s t a t i c  l a t e ra l -d i r ec t iona l  s t a b i l i t y  charac te r i s t ics  
a t  Mach numbers of 1 .41 and 2.20 of configurations having various body cross- 
sec t iona l  shapes indicated the  following r e s u l t s  : 

1. The d i rec t iona l  s t a b i l i t y ,  pa r t i cu la r ly  f o r  high angles of a t tack ,  was 
found t o  be dependent on body cross-sectional shape. 

2. A c i r cu la r  fuselage generally indicated the  l e a s t  e f f ec t s  of angle of 
a t t ack  on the  la te ra l -d i rec t iona l  stabilit?y charac te r i s t ics  of any of the  body 
shapes invest  i gated . 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Stat ion,  Hampton, Va., Apr i l  18, 1964. 
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U p r i g h t  t r i a n g l e  I n v e r t e d  t r i a n g l e  

Ell i p s e  
I 

C i r c l e  
I 

F l a t  - b o t t o m  t e a r d r o p  

(b) Fuselage cross sections. 

Figure 1.- Concluded. 



( a )  Upright and inverted t r iangle ;  a = 00. 

Figure 2.- Typical aerodynamic charac te r i s t ics  i n  s ides l ip .  Wing on; M = 1.41. 
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Figure 2.- Continued. 



C 

C l  

CY 

I I ~ I I I ~ I I I  

C r o s s - s e c t i o n  

I i I o C i r c l e  
d C i r c l e  

shape  T a i  

On 
O f  

( b )  Ci rc le ;  a = 11" - Continued. 
Figure 2.- Continued. 

16 

I 



- 2  

i r o s s - s e c t  ion shar 

o C i r c l e  
d C i r c l e  

(b)  Circle;  a = 16' - Concluded. 

Figure 2.- Concluded. 
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( a )  uprigbt and inverted t r iangle ;  u =  oO. 

Figure 3 . -  Typical aerodynamic charac te r i s t ics  i n  s ides l ip .  Wing on; M = 2.20. 

18 



~ 

I 
I 
1 I 

I 
I 
I 

~ 

k I 

I 
1 
I 
I '  
I 
II!  
I 1  

* li 

~ 

i 

ross-section 

1 Upright tr ia 
L Upright tr ia 
7 Inverted tri 

(a) Upright and inverted t r iangle ;  a = 11O - Continued. 

Figure 3 . -  Continued. 



( a )  Upright and inverted t r iangle ;  a = 16O - Concluded. 

Figure 3 . -  Continued. 
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(b)  Circle;  a =  11' - Continued. 

Figure 3 . -  Continued. 
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( a )  M = 1.41.  

Figure 4.- Variation of s ides l ip  parameters with angle of a t t ack  fo r  the  c i r cu la r  fuselage. 
Wing on. 
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Figure 5.- Vari 

( a )  M = 1.41. 

.at ion of s ides l ip  parameters with angle of a t t ack  for the  flat-bottom teardrop 
fuselage. Wing on. 
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Figure 6. 

( a )  M = 1.41.  

-Var i a t ion  of s ides l ip  parameters with angle of a t t ack  for an e l l i p t i c a l  
Wing on. 

fuselage. 
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(b) M = 2.20. 

Figure 6 . -  Concluded. 



( a )  M = 1.41.  

Figure 7.- Variation of s ides l ip  parameters with angle of  a t t ack  f o r  the upright and inverted 
t r iangular  fuselage. Wing on. 
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( a )  M = 1.41; upright t r i a n g l e .  

Figure 10.- Effect  of wing on t h e  var ia t ion of v e r t i c a l - t a i l  contribution t o  s ides l ip  der ivat ives  
f o r  upright and inverted t r iangular  bodies. 
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( e )  M = 2.20; upright t r i ang le .  

Figure 10. - Continued. 
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(a) M = 2.20; inverted t r i a n a e .  

Figure 10. - Concluded. 

39 

I 



L 
0 
- 

- . 4  - . 2  

'I ,L~ 
0 C i r c l e  

V I n v e r t e d  t r i a n g l e  
0 E l l i p s e  

I '  

U p r i g h t  t r i a n g l e  - 

-. 

0 F l a t - b o t t o m  t e a r d r o p  /--I-/ I 

(a) M = 1.41. 

Figure  11.- E f f e c t  of fuselage cross-sectional shape on aerodynamic characteristics in pitch. 
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(b) M = 2.20. 

Figure 11.- Continued. 
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